Enzyme-catalyzed activation of anticancer prodrugs.

نویسندگان

  • Martijn Rooseboom
  • Jan N M Commandeur
  • Nico P E Vermeulen
چکیده

The rationale fo the development of prodrugs relies upon delivery of higher concentrations of a drug to target cells compared to administration of the drug itself. In the last decades, numerous prodrugs that are enzymatically activated into anti-cancer agents have been developed. This review describes the most important enzymes involved in prodrug activation notably with respect to tissue distribution, up-regulation in tumor cells and turnover rates. The following endogenous enzymes are discussed: aldehyde oxidase, amino acid oxidase, cytochrome P450 reductase, DT-diaphorase, cytochrome P450, tyrosinase, thymidylate synthase, thymidine phosphorylase, glutathione S-transferase, deoxycytidine kinase, carboxylesterase, alkaline phosphatase, beta-glucuronidase and cysteine conjugate beta-lyase. In relation to each of these enzymes, several prodrugs are discussed regarding organ- or tumor-selective activation of clinically relevant prodrugs of 5-fluorouracil, axazaphosphorines (cyclophosphamide, ifosfamide, and trofosfamide), paclitaxel, etoposide, anthracyclines (doxorubicin, daunorubicin, epirubicin), mercaptopurine, thioguanine, cisplatin, melphalan, and other important prodrugs such as menadione, mitomycin C, tirapazamine, 5-(aziridin-1-yl)-2,4-dinitrobenzamide, ganciclovir, irinotecan, dacarbazine, and amifostine. In addition to endogenous enzymes, a number of nonendogenous enzymes, used in antibody-, gene-, and virus-directed enzyme prodrug therapies, are described. It is concluded that the development of prodrugs has been relatively successful; however, all prodrugs lack a complete selectivity. Therefore, more work is needed to explore the differences between tumor and nontumor cells and to develop optimal substrates in terms of substrate affinity and enzyme turnover rates fo prodrug-activating enzymes resulting in more rapid and selective cleavage of the prodrug inside the tumor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.

The anticancer oxazaphosphorine prodrugs cyclophosphamide and ifosfamide are activated in human liver by a 4-hydroxylation reaction catalyzed by multiple cytochrome P450 (CYP) enzymes. In the present study, we used a cultured human hepatocyte model to identify possible inducers of the CYP-catalyzed activation of these two anticancer prodrugs. Treatment of primary cultures of human hepatocytes w...

متن کامل

Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics.

Cyclophosphamide (CPA) and ifosfamide (IFA) are oxazaphosphorine anticancer prodrugs metabolized by two alternative cytochrome P450 (P450) pathways, drug activation by 4-hydroxylation and drug inactivation by N-dechloroethylation, which generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde. CPA and IFA metabolism catalyzed by P450s 2B1, 2B4, 2B5, and seven site-specific 2B1 muta...

متن کامل

Multiple event activation of a generic prodrug trigger by antibody catalysis.

Chemotherapeutic regimes are typically limited by nonspecific toxicity. To address this problem we have developed a broadly applicable drug-masking chemistry that operates in conjunction with a unique broad-scope catalytic antibody. This masking chemistry is applicable to a wide range of drugs because it is compatible with virtually any heteroatom. We demonstrate that generic drug-masking group...

متن کامل

Application of a microfluidic reactor for screening cancer prodrug activation using silica-immobilized nitrobenzene nitroreductase.

The nitroreductase-catalyzed conversion of a strong electron-withdrawing nitro group to the corresponding electron-donating hydroxylamine is useful in a variety of biotechnological applications. Activation of prodrugs for cancer treatments or antibiotic therapy are the most common applications. Here, we show that a bacterial nitrobenzene nitroreductase (NbzA) from Pseudomonas pseudoalcaligenes ...

متن کامل

A DT-diaphorase responsive theranostic prodrug for diagnosis, drug release monitoring and therapy.

A DT-diaphorase-activatable theranostic prodrug, which contains camptothecin, a self-immolative linker and a trigger group, has been developed for the detection of DT-diaphorase, tracking of drug release and selectively killing cancer cells over-expressed with DT-diaphorase. This strategy may offer a new approach for the development of enzyme-catalyzed theranostic anticancer therapeutics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pharmacological reviews

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2004